Пятница20 июня
Образование

Все ли вы знаете о правильной пирамиде? Апофема - это ...

4 августа 2018

Для решения задач на обширную тему "Стереометрия" нужно выучить и разобрать очень много элементов и тонкостей, полностью изучить все свойства фигур, а также не забывать свойства всех фигур, которые включены в курс "Планиметрии".

Среди задач по объемным фигурам очень часто встречается правильная пирамида, чтобы легко решать их, нужно хорошо с ней познакомиться. Пирамида называется правильной, если в ее основании лежит правильный многоугольник, а ее вершина спроецирована в центр основания. Как раз при изучении этого многоугольника вы услышите об апофеме.

Рисуем пирамиду

Как вы уже поняли, в геометрии понятие апофемы - это широко распространенное явление. Невозможно узнать некоторые измерения пирамиды без знания этого. Само слово "апофема" - это пришедшее к нам из греческого языка явление, и переводится оно как "откладываю".

Определение

В планиметрии апофема - перпендикуляр (как сам, так и его длина), который проведен к стороне правильного многоугольника из центра. В стереометрии апофема пирамиды - это высота в боковой грани, которая проведена к основанию. Используется только для правильных пирамид. Соответственно, апофема правильной треугольной пирамиды - это высота ее грани, которая представлена равнобедренным треугольником.

Какова роль апофемы

Апофема - это очень важный элемент пирамиды, потому что с ее помощью можно решить огромное количество задач. В частности, боковая поверхность правильной пирамиды равна полупроизведению периметра основания и апофемы грани.

Sбп = (Pосн*h)/2; h - апофема, это ее ключевая роль.

Устройство пирамиды

Не путайте с H (высота объемной фигуры в стереометрии).

Также, благодаря знанию апофемы, можно найти площадь грани как равнобедренного треугольника.

Свойства апофемы

Их мало, но все же их нужно помнить. В целом это следствия, вытекающие из определения. Итак, апофема в правильной пирамиде:

  1. Опущена на сторону основания под углом 90 градусов.
  2. Делит сторону, на которую опущена, пополам, так как является высотой в равнобедренном/равностороннем треугольнике и по совместительству - медианой.

В правильной пирамиде все апофемы равны, так как все ее боковые грани также одинаковые. При нахождении длины апофемы вам придется воспользоваться как свойствами многоугольника, так и свойствами многогранника. Как же найти числовое значение апофемы в правильной пирамиде?

Как найти апофему пирамиды

Ее можно найти, применяя все ранее полученные знания, вот всего лишь несколько примеров:

  • Если известны боковое ребро и сторона основания. Так как апофема делит сторону основания пополам и образует с ней угол в 90 градусов, то найти ее из прямоугольного треугольника по теореме Пифагора вам не составит труда. Также можно найти апофему, используя знания соотношений в прямоугольном треугольнике.
  • Если известен радиус вписанной окружности в основание правильной пирамиды и высота всей фигуры. Радиус, проведенный к точке касания, перпендикулярен касательной, и апофема перпендикулярна этой стороне основания (которая является касательной к вписанной окружности). Высота фигуры перпендикулярна основанию и попадает в центр окружности, вписанной в основание пирамиды. Следовательно, радиус и высота фигуры являются катетами и образуют прямой угол, а вместе с апофемой - прямоугольный треугольник. И опять же по теореме Пифагора или через соотношения в прямоугольном треугольнике вы легко найдете апофему.
Апофема в пирамиде
  • Также если дана площадь грани и известно основание.

В любом случае при нахождении апофемы вам придется вспоминать все основные законы и правила планиметрии. Если неизвестны какие-то элементы из этого списка, то вы можете оперировать данными параметрами, и, постепенно находя вышеописанные данные, найти апофему вам не составит труда. Надеемся, что наша статья помогла вам в освоении такой интересной темы.

Источник: fb.ru
Актуально
Система комментирования SigComments